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.  INTRODUCTION

In [11], S.Tanno classified connected almost contact metric manifolds whose automorphism group possesses
the maximum dimension. For such a manifold, the sectional curvature of a plain sections containing { is a
constant, say ¢ .He showed that they can be divided into three classes:

(1.1) homogeneous normal contact Riemannian manifolds with ¢ < 0 ,
(1.2)  global Riemannian products of a line or a circle with a Kaehlar manifold of constant
holomorphic sectional curvature if ¢ = 0 and

(1.3) A warped product space R xsC if ¢ > 0.

It is well known that the manifolds of class (1.1) are characterized by admitting a Sasakian structure.
Kenmotsu [8] characterized the differential geometric properties of the manifolds of class (1.3); the structure
so obtained is now known as Kenmotsu structure. In general these structures are not Sasakian [8].The
Gray-Hervella classication of almost Hermitian manifolds [2], there appears a class W, , of Hermitian
manifolds which are closely related to locally conformal Kaehlar manifolds [10]. An almost contact metric
structure on the manifold 4/ is called a trans-Sasakian structure [7] if the product manifold M x R belongs to

the classW4 . The class Cs@ C; (see [5], [6]) coincides with the class of trans-Sasakian structure of type (a,
B) .We note that trans-Sasakian structure of type (0,0),(0, B) and (0,0) are cosymplectic [4], # -Kenmotsu
[8] and a -Sasakian [8] respectively.

In 2005, Ahmet Yildiz [1] studied Lorentzian o —Sasakian manifolds and proved that conformally flat and
quasi conformally flat Lorentzian a -Ssaskian manifolds are locally isometric with a sphere.

A Riemannian manifold M are locally symmetric if its curvature tensor R satisfies VR=0 , where Levi-
Civita connection of the Riemannian metric. As a generalization of locally symmetric spaces, many

geometers have considered semi-symmetric spaces and in turn their generalizations. A Riemannian manifold
M is said to be semi-symmetric if its curvature tensor R satisfies

R(X,Y)-R=0, XY €M,

where R (X,Y) acts on R as a derivation.

Locally symmetric and semi-symmetric P-Sasakian manifolds are studied in [14] .After curvature tensor, the
Weyl conformal curvature tensor ¢ and the concircular curvature tensor 7 are the next important curvature
tensor .In this paper, we study several derivation conditions on Lorentzian a — Sasakian manifolds. The

Author o.o . Departrment of Applied Science, Faculty of Mathematics, Alwar Institute of Engineering & Technology, M.I.A. Alwar-301030,
Rajasthan India. E-mails : prof sky16@yahoo.com,dd suthar@yahoo.co.in

© 2012 Global Journals Inc. (US)

February 2012

[y
o
[y

Global Journal of Science Frontier Research (F ) Volume XII Issue II Version I



2012

February

[y
(=}
N

XII Issue II Version I

Frontier Research (F ) Volume

Global Journal of Science

paper is organized as follows. In section2, we give a brief account of Lorentzian a —Sasakian manifolds, the

Wey conformal curvature tensor and the concircular curvature tensor. In section 3, we find the necessary
and sufficient condition for Lorentzian a— Sasakian manifolds satisfying the condition Z({ , X)-Z=0, Z
(,X)-R=0,R({,X) Z=0,Z({,X)-8=0,and Z({,X) -C=0.

I1. LORENTZIAN a -SASAKIAN MANIFOLDS

An »- dimension differentiable manifold 7is called Lorentzian o —Sasakian manifold if it
admits a (1,1) tensor field ¢ ,a contravarient vector field ¢ , a covariant vector field »n and a

Lorentzian metric g which satisfy (see [1]) R ¢
e
77(4) =-1 ’ (2 1)
0% =1+7®¢, 22)
9(@X,¢¥) = g(X,Y) +n(X)n(Y), 2.3) - =
9(X.&) =n(X), = EE
pE=0, (pX)=0, 2.5) 5 =
. o S
5 B
for all X,Y €T, 2 SK
Also Lorentzian « -Sasakian manifold is satisfying (see [1]) gﬁ %
E B
= o
where v denotes the operator of covariant differentiation with respect to the Lorentzian metric g % = (é?
Further on Lorentzian a — Sasakian manifold 27 the following relations holds ([1]). g €.
o =y
= ®
HR(X.Y)Z) = a?{g(Y, Z)n(X) ~9(X, Z)n(V )}, 2.7) = -
9 = =
E=
9(R(. XYY, &) =—a™{g(X,Y) —n(X)n(¥)}, (2.8) = £
xn —+
= =
&
(R X)Y = a*g(X,Y)S ~n(¥)X}, (2.9) g B
@D
»n
2 =5 o
RXY)S = a™ ()X ~n(X)Y}, (2.10) g
2 % S
S
R YIS =a™m(Y)Y +Y}, (2.11) § g
2 N
— o2 _ . 2
(VxOI) = a2 (X.Y)E =n(0)X3, (2.12) S
2 S 5
S(X,&) = (n-Da"n(X), (2.13) & B
7} o
An almost para contact Riemannian manifold 47 is said to be 7 -Einstein if the Ricci operator Q satisfies ;Q. =
—
Q=ald+bn®¢, § §
where a and b are smooth functions on the manifold. In particular if » = 0, then #is an Einstein manifold. 5:
Let (M, g) be an n — dimensional Riemannian manifold .Then the concircular curvature tensor and the £
Wey conformal curvature tensor are defined by 9. :5
e
Z(X,Y)U =R(X,Y)U - [g(Y, U)X -g(X,U)Y], (2.14) g
n(n-1) =
S
o,

1
C(X,Y)U =R(X,Y)U ————|S(Y ,U)X=S(X,U)Y+g(Y U)QX—-g(X,U)QY
(XU =R == [SOU)X-S (X U)Y-+g(Y U)X -G (X L)QY] (2.15)

T

+m[g(Y,U)X—g(X,U)Y]
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for all X, v,U e TM, ,respectively, where R is the curvature tensor, § is the Ricci tensor and t is the scalar
curvature tensor of A7 .

I11.  MAIN RESULTS

In this section, we obtain necessary and sufficient condition for Lorentzian a —Sasakian manifolds satisfying
the derivations conditions Z({ ,X) . Z =0, ¢ ,X) . R=0,R({ ,X). Z2=0,Z({,X).5=0,and Z

(¢, X).C=0.

Theorem 3.1. An n — dimensional Lorentzian a—Sasakian manifold (M", g) satisties

N
Z(£,X)-Z2=0 §|
if and only if either the scalar curvature of (M"g) is ¢ = o’ n (1-n) or (M"g) is locally isometric to the .
Hyperbolic space H"(-0?). 5
Proof. In a Lorentz an a — Sasakian manifold (A%g) , we have ©
142 4 103
Z(X\Y), = - X-n(X)Y),
(X,Y)¢ _(a n(n_l)ﬂ (V) X=n(X)Y) (3.1)
2_
Z(& X)Y = [0! j g(X.Y)g—n(Y)X
U () ( ) (3:2)

The condition Z ({, X) . Z =0 implies that
[Z(CV)Z(X K ~Z(Z(EU)X,Y)E - Z(X,Z($UY)E =0,

This in view of (3.1) and (3.2) gives

2 2 )
((a +n(nl)J{z(X YU —[a _(DH {(g(Y,U)X—g(x,U)Y)}_

Therefore either the scalar curvature t = o’n (1-n) or

Z(X,Y)U = (az—(l)j((g(Y,U)X—g(X,U)Y)):Ox

This in view of (2.14) gives

R(X,Y)U = -a(g(X,U)Y—g(Y,U)X ).

The above equation implies that is of constant curvature — o and consequently it is locally isometric to the
Hyperbolic space H”(—02). Conversely, if has scalar curvature t =a* n (1-n) .Then from (3.2), it follows that
Z (¢, X) = 0 .Similarly in the second case, since is of constant curvature ¢ = ¢’n (1=n) therefore we again

get Z (L, X) = 0 In view of the fact Z ({, X).R denotes acting on R as a derivation, we state the
following result as the theorem

Global Journal of Science Frontier Research (F ) Volume XII Issue II Version I

Theorem3.2. An n —dimensional Lorentzian a —Sasakian manifold (M", g) satisties
Z(¢,X)-R=0

if and only if either (M" g)is locally isometric to the Hyperbolic space H"(~a®).or the scalar curvature of
(M",g) is ¢ =a’n (1=n) . [ |

Proposition3.3. In an # —dimensional Riemannian manifold, we have R-Z =R-R
Proof. We suppose that X, Y, U, V, W ¢ TM.Therefore
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(ROX.Y)ZU VW) =R(X,Y)ZU VW - Z(R(X,Y)U,V — Z(U,R(X,YVIW — Z(U V)R(X,Y)W.
which in view of (3.1) and symmetric properties of B ,we get
(ROX,Y)ZU N W) =R(X,Y)RU VW - RR(X,YIUVIW —RU,R(X,Y V)W —RU V)R(X,Y)W.

=(R(X,Y)-RUVW).

This proves the proposition3.3
Now, in view of theorem2.1 12 and the proposition3.3 we have the following result as the theorem:

Theorem3.4. An n — dimensional Lorentzian a — Sasakian manifold (/" g) satisfies
R(£,X)-Z=0
if and only if either (M ")g) is locally isometric to the Hyperbolic space Hn(-a”).
Next we prove the following result
Theorem3.5 An 1 — dimensional Lorentzian a — Sasakian manifold (A/%g) satisfies
Z(¢,X)-S =0
if and only if either (}/”g) has the curvature t = o’ n (1-n) or M/"is an Einstein manifold.

Proof. The condition Z (£, X) . .S =0 implies that

S(Z(¢, X)Y, &) +S(Y,Z(¢, X)¢) =0,
This in view of (2.13) and (3.2) gives

2 T 2
((x n(n_l)][S(X,Y)-Hx (n—l)g(X,Y)}

Therefore either the scalar curvature of (1”,g) is © = o’n (1-n) which is of constant or § = a’(1-n)g(X, )
which implies that (7% g) is an Einstein manifold with t = o’n (1-n).

which proves that theorem3.5.

Theorem3.6 .An n —dimensional conformally flat Lorentzian o—Sasakian manifold (M",g) is locally isometric
to the hyperbolic space H"(—a”).

Proof. In this section we suppose that Z(X,Y) .U=0 .Then from (2.14) we get

T

R(X,Y)U = [9(Y,U)X-g(XU)Y],

n(n-1 (3.3)

From (3.3), we have

T

R(X,Y,U,W) = o)

[9(Y U)g(X W)-g(X,U)g(Y W)],

(3.4)

where R(X,Y,U,W)=g(R(X,Y,U)W).

Putting X=1={in (3.4) and by use of (2.4) and (2.8), we obtain

2 T _
(a —MJ[Q(Y,U)M(Y)U(U)]— 0,

© 2012 Global Journals Inc. (US)

Ref.

“puelrey, ‘€09

=266 dd‘1T0z'6 ‘soryeworjeN JO [RUINOLIY], ‘IOSUSJ, 9INJRAIN) IR[NOIIOUO)) S} UO SUOIIPUO) UTR}ID))
Butkystyeg spiojrue]y — (g H7) UQ ‘reying [erefe( pue IPOAIM(I'Y UrWMpPRIJ ‘ARpeX Iewmy] [ung [g]



This shows that either © = o*n(n-1) or g(Y,;0)=—n (Y)n (U) But if g(Y;U )= —n (¥) n (U) .Then from
(2.3) we get g9 (Y,pU )= 0, which is not possible. Therefore, t = o’n (n—1) .Now putting t = o’n (n-1)
in (3.3), we find

R(X,Y)U = a?[g(Y U)X -g(X U)Y]
This proves the theorem3.6
Z(¢,X)-C=0

|\ | otes Theorem6. An n — dimensional Lorentzian o —Sasakian manifold (M", g) satisfies
if and only if either (M g) has the scalar curvature t = a’n (n-1) or (M" g) is an 7 -Einstein manifold.
Proof. The condition Z ({ , X).C =0 implies that

[Z(CU).CX Y)W —C(Z(£ U)X, Y)W —C(X,Z(£,U)Y)W =0,

This in view of (3.1) gives

g2 T | CORY WU (CX YW -gU, X)C(S. Y)W
n(n-1) | +n(X)CU,Y W)-g(U.Y)C(X,& W)-+,(Y)C(X U W)

So either scalar curvature of (M"g) is © = a’n (n-1) or the equation

{C(X Y W U)E-n(C(X Y)W -g(U,X)C(S. Y)W } 0
7(X)CU.Y W)-g(U Y)C(X L W)n(Y)C(X U W) |~

holds on A/ .Taking inner product of above last equations with { , we get

{—C(X Y WU)E-n(C(XY)W)nU)-gU,X)n(C(S.YIW) } -0
+7(X)n(CUY W)-gU.Y)7(C(X.&W))+n(Y)n(C(XUW)) |

Hence by using (2.7)(2.13)and(2.15) in above equations we get

S(X,U) =[a2 ]g(X,U)+[a2+;+a2(n—1)}7(x)77(u),

T
N (n=-D(n-2) (n-D(n-2)

which implies that (/% g)is an 7 -Einstein manifold

This proves the theorem 6.
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